- NAME
- binary — Insert and extract fields from binary strings
- SYNOPSIS
- DESCRIPTION
- BINARY ENCODE AND
DECODE
- base64
- -maxlen
length
- -wrapchar
character
- -strict
- hex
- -strict
- uuencode
- -maxlen
length
- -wrapchar
character
- -strict
- BINARY FORMAT
- a
- A
- b
- B
- H
- h
- c
- s
- S
- t
- i
- I
- n
- w
- W
- m
- f
- r
- R
- d
- q
- Q
- x
- X
- @
- BINARY SCAN
- a
- A
- b
- B
- H
- h
- c
- s
- S
- t
- i
- I
- n
- w
- W
- m
- f
- r
- R
- d
- q
- Q
- x
- X
- @
- PORTABILITY
ISSUES
- EXAMPLES
- SEE
ALSO
- KEYWORDS
binary — Insert and extract fields from binary strings
binary decode format ?-option value ...?
data
binary encode format ?-option value ...?
data
binary format formatString ?arg arg ...?
binary scan string formatString ?varName varName
...?
This command provides facilities for manipulating binary data. The
subcommand binary format creates a binary string from normal
Tcl values. For example, given the values 16 and 22, on a 32-bit
architecture, it might produce an 8-byte binary string consisting
of two 4-byte integers, one for each of the numbers. The subcommand
binary scan, does the opposite: it extracts data from a
binary string and returns it as ordinary Tcl string values. The
binary encode and binary decode subcommands convert
binary data to or from string encodings such as base64 (used in
MIME messages for example).
Note that other operations on binary data, such as taking a
subsequence of it, getting its length, or reinterpreting it as a
string in some encoding, are done by other Tcl commands
(respectively string
range, string
length and encoding
convertfrom in the example cases). A binary string in Tcl
is merely one where all the characters it contains are in the range
\u0000-\u00FF.
When encoding binary data as a readable string, the starting binary
data is passed to the binary encode command, together with
the name of the encoding to use and any encoding-specific options
desired. Data which has been encoded can be converted back to
binary form using binary decode. The following formats and
options are supported.
- base64
- The base64 binary encoding is commonly used in mail
messages and XML documents, and uses mostly upper and lower case
letters and digits. It has the distinction of being able to be
rewrapped arbitrarily without losing information.
During encoding, the following options are supported:
- -maxlen length
- Indicates that the output should be split into lines of no more
than length characters. By default, lines are not
split.
- -wrapchar character
- Indicates that, when lines are split because of the
-maxlen option, character should be used to separate
lines. By default, this is a newline character, “\n”.
During decoding, the following options are supported:
- -strict
- Instructs the decoder to throw an error if it encounters any
characters that are not strictly part of the encoding itself.
Otherwise it ignores them. RFC 2045 calls for base64 decoders to be
non-strict.
- hex
- The hex binary encoding converts each byte to a pair of
hexadecimal digits in big-endian form.
No options are supported during encoding. During decoding, the
following options are supported:
- -strict
- Instructs the decoder to throw an error if it encounters
whitespace characters. Otherwise it ignores them.
- uuencode
- The uuencode binary encoding used to be common for
transfer of data between Unix systems and on USENET, but is less
common these days, having been largely superseded by the
base64 binary encoding.
During encoding, the following options are supported (though
changing them may produce files that other implementations of
decoders cannot process):
- -maxlen length
- Indicates the maximum number of characters to produce for each
encoded line. The valid range is 5 to 85. Line lengths outside that
range cannot be accommodated by the encoding format. The default
value is 61.
- -wrapchar
character
- Indicates the character(s) to use to mark the end of each
encoded line. Acceptable values are a sequence of zero or more
characters from the set { \x09 (TAB), \x0B (VT), \x0C (FF), \x0D
(CR) } followed by zero or one newline \x0A (LF). Any other values
are rejected because they would generate encoded text that could
not be decoded. The default value is a single newline.
During decoding, the following options are supported:
- -strict
- Instructs the decoder to throw an error if it encounters
anything outside of the standard encoding format. Without this
option, the decoder tolerates some deviations, mostly to forgive
reflows of lines between the encoder and decoder.
Note that neither the encoder nor the decoder handle the header
and footer of the uuencode format.
The binary format command generates a binary string whose
layout is specified by the formatString and whose contents
come from the additional arguments. The resulting binary value is
returned.
The formatString consists of a sequence of zero or more
field specifiers separated by zero or more spaces. Each field
specifier is a single type character followed by an optional flag
character followed by an optional numeric count. Most field
specifiers consume one argument to obtain the value to be
formatted. The type character specifies how the value is to be
formatted. The count typically indicates how many items of
the specified type are taken from the value. If present, the
count is a non-negative decimal integer or *, which
normally indicates that all of the items in the value are to be
used. If the number of arguments does not match the number of
fields in the format string that consume arguments, then an error
is generated. The flag character is ignored for binary
format.
Here is a small example to clarify the relation between the
field specifiers and the arguments:
binary format d3d {1.0 2.0 3.0 4.0} 0.1
The first argument is a list of four numbers, but because of the
count of 3 for the associated field specifier, only the first three
will be used. The second argument is associated with the second
field specifier. The resulting binary string contains the four
numbers 1.0, 2.0, 3.0 and 0.1.
Each type-count pair moves an imaginary cursor through the
binary data, storing bytes at the current position and advancing
the cursor to just after the last byte stored. The cursor is
initially at position 0 at the beginning of the data. The type may
be any one of the following characters:
- a
- Stores a byte string of length count in the output
string. Every character is taken as modulo 256 (i.e. the low byte
of every character is used, and the high byte discarded) so when
storing character strings not wholly expressible using the
characters \u0000-\u00ff, the encoding convertto command should
be used first to change the string into an external representation
if this truncation is not desired (i.e. if the characters are not
part of the ISO 8859-1 character set.) If arg has fewer than
count bytes, then additional zero bytes are used to pad out
the field. If arg is longer than the specified length, the
extra characters will be ignored. If count is *, then
all of the bytes in arg will be formatted. If count
is omitted, then one character will be formatted. For example,
binary format a7a*a alpha bravo charlie
will return a string equivalent to alpha\000\000bravoc,
binary format a* [encoding convertto utf-8 \u20ac]
will return a string equivalent to \342\202\254 (which is
the UTF-8 byte sequence for a Euro-currency character) and
binary format a* [encoding convertto iso8859-15 \u20ac]
will return a string equivalent to \244 (which is the ISO
8859-15 byte sequence for a Euro-currency character). Contrast
these last two with:
binary format a* \u20ac
which returns a string equivalent to \254 (i.e. \xac)
by truncating the high-bits of the character, and which is probably
not what is desired.
- A
- This form is the same as a except that spaces are used
for padding instead of nulls. For example,
binary format A6A*A alpha bravo charlie
will return alpha bravoc.
- b
- Stores a string of count binary digits in low-to-high
order within each byte in the output string. Arg must
contain a sequence of 1 and 0 characters. The
resulting bytes are emitted in first to last order with the bits
being formatted in low-to-high order within each byte. If
arg has fewer than count digits, then zeros will be
used for the remaining bits. If arg has more than the
specified number of digits, the extra digits will be ignored. If
count is *, then all of the digits in arg will
be formatted. If count is omitted, then one digit will be
formatted. If the number of bits formatted does not end at a byte
boundary, the remaining bits of the last byte will be zeros. For
example,
binary format b5b* 11100 111000011010
will return a string equivalent to \x07\x87\x05.
- B
- This form is the same as b except that the bits are
stored in high-to-low order within each byte. For example,
binary format B5B* 11100 111000011010
will return a string equivalent to \xe0\xe1\xa0.
- H
- Stores a string of count hexadecimal digits in
high-to-low within each byte in the output string. Arg must
contain a sequence of characters in the set
“0123456789abcdefABCDEF”. The resulting bytes are emitted in first
to last order with the hex digits being formatted in high-to-low
order within each byte. If arg has fewer than count
digits, then zeros will be used for the remaining digits. If
arg has more than the specified number of digits, the extra
digits will be ignored. If count is *, then all of
the digits in arg will be formatted. If count is
omitted, then one digit will be formatted. If the number of digits
formatted does not end at a byte boundary, the remaining bits of
the last byte will be zeros. For example,
binary format H3H*H2 ab DEF 987
will return a string equivalent to
\xab\x00\xde\xf0\x98.
- h
- This form is the same as H except that the digits are
stored in low-to-high order within each byte. This is seldom
required. For example,
binary format h3h*h2 AB def 987
will return a string equivalent to
\xba\x00\xed\x0f\x89.
- c
- Stores one or more 8-bit integer values in the output string.
If no count is specified, then arg must consist of an
integer value. If count is specified, arg must
consist of a list containing at least that many integers. The
low-order 8 bits of each integer are stored as a one-byte value at
the cursor position. If count is *, then all of the
integers in the list are formatted. If the number of elements in
the list is greater than count, then the extra elements are
ignored. For example,
binary format c3cc* {3 -3 128 1} 260 {2 5}
will return a string equivalent to \x03\xfd\x80\x04\x02\x05,
whereas
binary format c {2 5}
will generate an error.
- s
- This form is the same as c except that it stores one or
more 16-bit integers in little-endian byte order in the output
string. The low-order 16-bits of each integer are stored as a
two-byte value at the cursor position with the least significant
byte stored first. For example,
binary format s3 {3 -3 258 1}
will return a string equivalent to
\x03\x00\xfd\xff\x02\x01.
- S
- This form is the same as s except that it stores one or
more 16-bit integers in big-endian byte order in the output string.
For example,
binary format S3 {3 -3 258 1}
will return a string equivalent to
\x00\x03\xff\xfd\x01\x02.
- t
- This form (mnemonically tiny) is the same as s
and S except that it stores the 16-bit integers in the
output string in the native byte order of the machine where the Tcl
script is running. To determine what the native byte order of the
machine is, refer to the byteOrder element of the
tcl_platform array.
- i
- This form is the same as c except that it stores one or
more 32-bit integers in little-endian byte order in the output
string. The low-order 32-bits of each integer are stored as a
four-byte value at the cursor position with the least significant
byte stored first. For example,
binary format i3 {3 -3 65536 1}
will return a string equivalent to
\x03\x00\x00\x00\xfd\xff\xff\xff\x00\x00\x01\x00
- I
- This form is the same as i except that it stores one or
more one or more 32-bit integers in big-endian byte order in the
output string. For example,
binary format I3 {3 -3 65536 1}
will return a string equivalent to
\x00\x00\x00\x03\xff\xff\xff\xfd\x00\x01\x00\x00
- n
- This form (mnemonically number or normal) is the
same as i and I except that it stores the 32-bit
integers in the output string in the native byte order of the
machine where the Tcl script is running. To determine what the
native byte order of the machine is, refer to the byteOrder
element of the tcl_platform array.
- w
- This form is the same as c except that it stores one or
more 64-bit integers in little-endian byte order in the output
string. The low-order 64-bits of each integer are stored as an
eight-byte value at the cursor position with the least significant
byte stored first. For example,
binary format w 7810179016327718216
will return the string HelloTcl
- W
- This form is the same as w except that it stores one or
more one or more 64-bit integers in big-endian byte order in the
output string. For example,
binary format Wc 4785469626960341345 110
will return the string BigEndian
- m
- This form (mnemonically the mirror of w) is the same as
w and W except that it stores the 64-bit integers in
the output string in the native byte order of the machine where the
Tcl script is running. To determine what the native byte order of
the machine is, refer to the byteOrder element of the
tcl_platform array.
- f
- This form is the same as c except that it stores one or
more one or more single-precision floating point numbers in the
machine's native representation in the output string. This
representation is not portable across architectures, so it should
not be used to communicate floating point numbers across the
network. The size of a floating point number may vary across
architectures, so the number of bytes that are generated may vary.
If the value overflows the machine's native representation, then
the value of FLT_MAX as defined by the system will be used instead.
Because Tcl uses double-precision floating point numbers
internally, there may be some loss of precision in the conversion
to single-precision. For example, on a Windows system running on an
Intel Pentium processor,
binary format f2 {1.6 3.4}
will return a string equivalent to
\xcd\xcc\xcc\x3f\x9a\x99\x59\x40.
- r
- This form (mnemonically real) is the same as f
except that it stores the single-precision floating point numbers
in little-endian order. This conversion only produces meaningful
output when used on machines which use the IEEE floating point
representation (very common, but not universal.)
- R
- This form is the same as r except that it stores the
single-precision floating point numbers in big-endian order.
- d
- This form is the same as f except that it stores one or
more one or more double-precision floating point numbers in the
machine's native representation in the output string. For example,
on a Windows system running on an Intel Pentium processor,
binary format d1 {1.6}
will return a string equivalent to
\x9a\x99\x99\x99\x99\x99\xf9\x3f.
- q
- This form (mnemonically the mirror of d) is the same as
d except that it stores the double-precision floating point
numbers in little-endian order. This conversion only produces
meaningful output when used on machines which use the IEEE floating
point representation (very common, but not universal.)
- Q
- This form is the same as q except that it stores the
double-precision floating point numbers in big-endian order.
- x
- Stores count null bytes in the output string. If
count is not specified, stores one null byte. If
count is *, generates an error. This type does not
consume an argument. For example,
binary format a3xa3x2a3 abc def ghi
will return a string equivalent to
abc\000def\000\000ghi.
- X
- Moves the cursor back count bytes in the output string.
If count is * or is larger than the current cursor
position, then the cursor is positioned at location 0 so that the
next byte stored will be the first byte in the result string. If
count is omitted then the cursor is moved back one byte.
This type does not consume an argument. For example,
binary format a3X*a3X2a3 abc def ghi
will return dghi.
- @
- Moves the cursor to the absolute location in the output string
specified by count. Position 0 refers to the first byte in
the output string. If count refers to a position beyond the
last byte stored so far, then null bytes will be placed in the
uninitialized locations and the cursor will be placed at the
specified location. If count is *, then the cursor is
moved to the current end of the output string. If count is
omitted, then an error will be generated. This type does not
consume an argument. For example,
binary format a5@2a1@*a3@10a1 abcde f ghi j
will return abfdeghi\000\000j.
The binary scan command parses fields from a binary string,
returning the number of conversions performed. String gives
the input bytes to be parsed (one byte per character, and
characters not representable as a byte have their high bits
chopped) and formatString indicates how to parse it. Each
varName gives the name of a variable; when a field is
scanned from string the result is assigned to the
corresponding variable.
As with binary format, the formatString consists
of a sequence of zero or more field specifiers separated by zero or
more spaces. Each field specifier is a single type character
followed by an optional flag character followed by an optional
numeric count. Most field specifiers consume one argument to
obtain the variable into which the scanned values should be placed.
The type character specifies how the binary data is to be
interpreted. The count typically indicates how many items of
the specified type are taken from the data. If present, the
count is a non-negative decimal integer or *, which
normally indicates that all of the remaining items in the data are
to be used. If there are not enough bytes left after the current
cursor position to satisfy the current field specifier, then the
corresponding variable is left untouched and binary scan
returns immediately with the number of variables that were set. If
there are not enough arguments for all of the fields in the format
string that consume arguments, then an error is generated. The flag
character “u” may be given to cause some types to be read as
unsigned values. The flag is accepted for all field types but is
ignored for non-integer fields.
A similar example as with binary format should explain
the relation between field specifiers and arguments in case of the
binary scan subcommand:
binary scan $bytes s3s first second
This command (provided the binary string in the variable
bytes is long enough) assigns a list of three integers to
the variable first and assigns a single value to the
variable second. If bytes contains fewer than 8 bytes
(i.e. four 2-byte integers), no assignment to second will be
made, and if bytes contains fewer than 6 bytes (i.e. three
2-byte integers), no assignment to first will be made.
Hence:
puts [binary scan abcdefg s3s first second]
puts $first
puts $second
will print (assuming neither variable is set previously):
1
25185 25699 26213
can't read "second": no such variable
It is important to note that the c, s, and
S (and i and I on 64bit systems) will be
scanned into long data size values. In doing this, values that have
their high bit set (0x80 for chars, 0x8000 for shorts, 0x80000000
for ints), will be sign extended. Thus the following will
occur:
set signShort [binary format s1 0x8000]
binary scan $signShort s1 val; # val == 0xFFFF8000
If you require unsigned values you can include the “u” flag
character following the field type. For example, to read an
unsigned short value:
set signShort [binary format s1 0x8000]
binary scan $signShort su1 val; # val == 0x00008000
Each type-count pair moves an imaginary cursor through the
binary data, reading bytes from the current position. The cursor is
initially at position 0 at the beginning of the data. The type may
be any one of the following characters:
- a
- The data is a byte string of length count. If
count is *, then all of the remaining bytes in
string will be scanned into the variable. If count is
omitted, then one byte will be scanned. All bytes scanned will be
interpreted as being characters in the range \u0000-\u00ff so the
encoding convertfrom
command will be needed if the string is not a binary string or a
string encoded in ISO 8859-1. For example,
binary scan abcde\000fghi a6a10 var1 var2
will return 1 with the string equivalent to abcde\000
stored in var1 and var2 left unmodified, and
binary scan \342\202\254 a* var1
set var2 [encoding convertfrom utf-8 $var1]
will store a Euro-currency character in var2.
- A
- This form is the same as a, except trailing blanks and
nulls are stripped from the scanned value before it is stored in
the variable. For example,
binary scan "abc efghi \000" A* var1
will return 1 with abc efghi stored in
var1.
- b
- The data is turned into a string of count binary digits
in low-to-high order represented as a sequence of “1” and “0”
characters. The data bytes are scanned in first to last order with
the bits being taken in low-to-high order within each byte. Any
extra bits in the last byte are ignored. If count is
*, then all of the remaining bits in string will be
scanned. If count is omitted, then one bit will be scanned.
For example,
binary scan \x07\x87\x05 b5b* var1 var2
will return 2 with 11100 stored in var1 and
1110000110100000 stored in var2.
- B
- This form is the same as b, except the bits are taken in
high-to-low order within each byte. For example,
binary scan \x70\x87\x05 B5B* var1 var2
will return 2 with 01110 stored in var1 and
1000011100000101 stored in var2.
- H
- The data is turned into a string of count hexadecimal
digits in high-to-low order represented as a sequence of characters
in the set “0123456789abcdef”. The data bytes are scanned in first
to last order with the hex digits being taken in high-to-low order
within each byte. Any extra bits in the last byte are ignored. If
count is *, then all of the remaining hex digits in
string will be scanned. If count is omitted, then one
hex digit will be scanned. For example,
binary scan \x07\xC6\x05\x1f\x34 H3H* var1 var2
will return 2 with 07c stored in var1 and
051f34 stored in var2.
- h
- This form is the same as H, except the digits are taken
in reverse (low-to-high) order within each byte. For example,
binary scan \x07\x86\x05\x12\x34 h3h* var1 var2
will return 2 with 706 stored in var1 and
502143 stored in var2.
Note that most code that wishes to parse the hexadecimal digits
from multiple bytes in order should use the H format.
- c
- The data is turned into count 8-bit signed integers and
stored in the corresponding variable as a list. If count is
*, then all of the remaining bytes in string will be
scanned. If count is omitted, then one 8-bit integer will be
scanned. For example,
binary scan \x07\x86\x05 c2c* var1 var2
will return 2 with 7 -122 stored in var1 and
5 stored in var2. Note that the integers returned are
signed, but they can be converted to unsigned 8-bit quantities
using an expression like:
set num [expr { $num & 0xFF }]
- s
- The data is interpreted as count 16-bit signed integers
represented in little-endian byte order. The integers are stored in
the corresponding variable as a list. If count is *,
then all of the remaining bytes in string will be scanned.
If count is omitted, then one 16-bit integer will be
scanned. For example,
binary scan \x05\x00\x07\x00\xf0\xff s2s* var1 var2
will return 2 with 5 7 stored in var1 and
-16 stored in var2. Note that the integers returned
are signed, but they can be converted to unsigned 16-bit quantities
using an expression like:
set num [expr { $num & 0xFFFF }]
- S
- This form is the same as s except that the data is
interpreted as count 16-bit signed integers represented in
big-endian byte order. For example,
binary scan \x00\x05\x00\x07\xff\xf0 S2S* var1 var2
will return 2 with 5 7 stored in var1 and
-16 stored in var2.
- t
- The data is interpreted as count 16-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to s and S. To
determine what the native byte order of the machine is, refer to
the byteOrder element of the tcl_platform array.
- i
- The data is interpreted as count 32-bit signed integers
represented in little-endian byte order. The integers are stored in
the corresponding variable as a list. If count is *,
then all of the remaining bytes in string will be scanned.
If count is omitted, then one 32-bit integer will be
scanned. For example,
set str \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff
binary scan $str i2i* var1 var2
will return 2 with 5 7 stored in var1 and
-16 stored in var2. Note that the integers returned
are signed, but they can be converted to unsigned 32-bit quantities
using an expression like:
set num [expr { $num & 0xFFFFFFFF }]
- I
- This form is the same as I except that the data is
interpreted as count 32-bit signed integers represented in
big-endian byte order. For example,
set str \x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0
binary scan $str I2I* var1 var2
will return 2 with 5 7 stored in var1 and
-16 stored in var2.
- n
- The data is interpreted as count 32-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to i and I. To
determine what the native byte order of the machine is, refer to
the byteOrder element of the tcl_platform array.
- w
- The data is interpreted as count 64-bit signed integers
represented in little-endian byte order. The integers are stored in
the corresponding variable as a list. If count is *,
then all of the remaining bytes in string will be scanned.
If count is omitted, then one 64-bit integer will be
scanned. For example,
set str \x05\x00\x00\x00\x07\x00\x00\x00\xf0\xff\xff\xff
binary scan $str wi* var1 var2
will return 2 with 30064771077 stored in var1
and -16 stored in var2. Note that the integers
returned are signed and cannot be represented by Tcl as unsigned
values.
- W
- This form is the same as w except that the data is
interpreted as count 64-bit signed integers represented in
big-endian byte order. For example,
set str \x00\x00\x00\x05\x00\x00\x00\x07\xff\xff\xff\xf0
binary scan $str WI* var1 var2
will return 2 with 21474836487 stored in var1
and -16 stored in var2.
- m
- The data is interpreted as count 64-bit signed integers
represented in the native byte order of the machine running the Tcl
script. It is otherwise identical to w and W. To
determine what the native byte order of the machine is, refer to
the byteOrder element of the tcl_platform array.
- f
- The data is interpreted as count single-precision
floating point numbers in the machine's native representation. The
floating point numbers are stored in the corresponding variable as
a list. If count is *, then all of the remaining
bytes in string will be scanned. If count is omitted,
then one single-precision floating point number will be scanned.
The size of a floating point number may vary across architectures,
so the number of bytes that are scanned may vary. If the data does
not represent a valid floating point number, the resulting value is
undefined and compiler dependent. For example, on a Windows system
running on an Intel Pentium processor,
binary scan \x3f\xcc\xcc\xcd f var1
will return 1 with 1.6000000238418579 stored in
var1.
- r
- This form is the same as f except that the data is
interpreted as count single-precision floating point number
in little-endian order. This conversion is not portable to the
minority of systems not using IEEE floating point
representations.
- R
- This form is the same as f except that the data is
interpreted as count single-precision floating point number
in big-endian order. This conversion is not portable to the
minority of systems not using IEEE floating point
representations.
- d
- This form is the same as f except that the data is
interpreted as count double-precision floating point numbers
in the machine's native representation. For example, on a Windows
system running on an Intel Pentium processor,
binary scan \x9a\x99\x99\x99\x99\x99\xf9\x3f d var1
will return 1 with 1.6000000000000001 stored in
var1.
- q
- This form is the same as d except that the data is
interpreted as count double-precision floating point number
in little-endian order. This conversion is not portable to the
minority of systems not using IEEE floating point
representations.
- Q
- This form is the same as d except that the data is
interpreted as count double-precision floating point number
in big-endian order. This conversion is not portable to the
minority of systems not using IEEE floating point
representations.
- x
- Moves the cursor forward count bytes in string.
If count is * or is larger than the number of bytes
after the current cursor position, then the cursor is positioned
after the last byte in string. If count is omitted,
then the cursor is moved forward one byte. Note that this type does
not consume an argument. For example,
binary scan \x01\x02\x03\x04 x2H* var1
will return 1 with 0304 stored in var1.
- X
- Moves the cursor back count bytes in string. If
count is * or is larger than the current cursor
position, then the cursor is positioned at location 0 so that the
next byte scanned will be the first byte in string. If
count is omitted then the cursor is moved back one byte.
Note that this type does not consume an argument. For example,
binary scan \x01\x02\x03\x04 c2XH* var1 var2
will return 2 with 1 2 stored in var1 and
020304 stored in var2.
- @
- Moves the cursor to the absolute location in the data string
specified by count. Note that position 0 refers to the first
byte in string. If count refers to a position beyond
the end of string, then the cursor is positioned after the
last byte. If count is omitted, then an error will be
generated. For example,
binary scan \x01\x02\x03\x04 c2@1H* var1 var2
will return 2 with 1 2 stored in var1 and
020304 stored in var2.
The r, R, q and Q conversions will only
work reliably for transferring data between computers which are all
using IEEE floating point representations. This is very common, but
not universal. To transfer floating-point numbers portably between
all architectures, use their textual representation (as produced by
format) instead.
This is a procedure to write a Tcl string to a binary-encoded
channel as UTF-8 data preceded by a length word:
proc writeString {channel string} {
set data [encoding convertto utf-8 $string]
puts -nonewline [binary format Ia* \
[string length $data] $data]
}
This procedure reads a string from a channel that was written by
the previously presented writeString procedure:
proc readString {channel} {
if {![binary scan [read $channel 4] I length]} {
error "missing length"
}
set data [read $channel $length]
return [encoding convertfrom utf-8 $data]
}
This converts the contents of a file (named in the variable
filename) to base64 and prints them:
set f [open $filename rb]
set data [read $f]
close $f
puts [binary encode base64 -maxlen 64 $data]
encoding, format, scan, string, tcl_platform
binary, format, scan
Copyright © 1997 Sun Microsystems, Inc.
Copyright © 2008 Donal K. Fellows